JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ursolic acid isolated from the seed of Cornus officinalis ameliorates colitis in mice by inhibiting the binding of lipopolysaccharide to Toll-like receptor 4 on macrophages.

Ursolic acid, which was isolated from an ethanol extract of Cornus officinalis seed, potently inhibited nuclear factor κ light-chain enhancer of activated B cells (NF-κB) activation in lipopolysaccharide (LPS)-stimulated peritoneal macrophages. Therefore, we investigated the anti-inflammatory mechanism of ursolic acid in LPS-stimulated macrophages and colitic mice. Ursolic acid inhibited phosphorylation of interleukin 1 receptor-associated kinase (IRAK)1, TAK1, inhibitor of nuclear factor κB kinase subunit β (IKKβ), and IκBα as well as activation of NF-κB and MAPKs in LPS-stimulated macrophages. Ursolic acid suppressed LPS-stimulated interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, and inducible NO synthetase (iNOS) expression as well as PGE2 and NO levels. Ursolic acid not only inhibited the Alexa Fluor 488-conjugated LPS-mediated shift of macrophages but also reduced the intensity of fluorescent LPS bound to the macrophages transiently transfected with or without MyD88 siRNA. However, ursolic acid did not suppress NF-κB activation in peptidoglycan-stimulated macrophages. Oral administration of ursolic acid significantly inhibited 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colon shortening and myeloperoxidase (MPO) activity in mice. Ursolic acid also suppressed TNBS-induced COX-2 and iNOS expression as well as NF-κB activation in colon tissues. Ursolic acid (20 mg/kg) also inhibited TNBS-induced IL-1β, IL-6, TNF-α by 93, 86, and 85%, respectively (p < 0.05). However, ursolic acid reversed TNBS-mediated downregulation of IL-10 expression to 79% of the normal control group (p < 0.05). On the basis of these findings, ursolic acid may ameliorate colitis by regulating NF-κB and MAPK signaling pathways via the inhibition of LPS binding to TLR4 on immune cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app