Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease.

Congenital heart disease (CHD) is the most common form of birth defect and is the most prevalent non-infectious cause of infant death. A growing body of evidence documents that genetic defects are involved in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disease and the genetic basis underpinning CHD in an overwhelming majority of patients remain unclear. In this study, the coding exons and flanking introns of the Nkx2.6 gene, which codes for a homeodomain-containing transcription factor important for normal cardiovascular development, were sequenced in 320 unrelated patients with CHD, and two novel heterozygous Nkx2.6 mutations, p.V176M and p.K177X, were identified in two unrelated patients with CHD, respectively, including a patient with tetralogy of Fallot and a patient with double outlet of right ventricle and ventricular septal defect. The mutations were absent in 400 control chromosomes and the altered amino acids were completely conserved evolutionarily across species. Due to unknown transcriptional targets of Nkx2.6, the functional consequences of the identified mutations at transcriptional activity were evaluated by using Nkx2.5 as a surrogate. Alignment between human Nkx2.6 and Nkx2.5 proteins showed that V176M-mutant Nkx2.6 was equivalent to V182M-mutant Nkx2.5 and K177X-mutant Nkx2.6 was equal to K183X-mutant Nkx2.5, and introduction of V182M or K183X into Nkx2.5 significantly diminished its transcriptional activating function when compared with its wild-type counterpart. To our knowledge, this is the first report on the association of Nkx2.6 loss-of-function mutation with increased susceptibility to tetralogy of Fallot or double outlet of right ventricle and ventricular septal defect, providing novel insight into the molecular mechanism of CHD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app