JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T2 magnetic resonance imaging.

The development of iron oxide nanoparticles (IONPs) with enhanced r2 relaxivity is important for achieving greater sensitivity in in vivo magnetic resonance (MR) imaging. In this study, it was considered that polyethyleneimine (PEI) could play a role in varying the particle and cluster sizes in IONP synthesis, leading to different r2 relaxivities. To demonstrate this, superparamagnetic IONPs were synthesised in the presence of NH4OH and PEI using a co-precipitation method. PEI acted as an active stabiliser during IONP synthesis, and therefore the particle size, hydrodynamic cluster size, coating layer thickness, saturation magnetisation, and r2 relaxivity were all strongly influenced by the PEI concentration. Monodispersed IONPs with a mean hydrodynamic cluster size of 14.4nm were synthesised at a PEI concentration of 0.05wt% and in this case, the r2 relaxivity was increased up to 227.6mM(-1)s(-1). This confirmed the viability of PEI-mediated synthesis as a means of controlling the particle/cluster size and enhancing the r2 relaxivity. The PEI-IONPs exhibited no significant cytotoxicity up to 132ppm. Rapid and strong uptake of PEI-IONPs was detected in rat liver by in vivo MR imaging. The superparamagnetic PEI-IONPs prepared in this study are considered to be sufficiently sensitive for use as MR imaging contrast agents, which can be used as parent particles for further functional modification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app