Add like
Add dislike
Add to saved papers

Characterization of the PLCB1 promoter and regulation by early growth response transcription factor EGR-1.

The Gαq/-Gα11-PLCβ1 pathway is important for intracellular signalling and associated with pathological conditions, such as cardiac hypertrophy. The GNAQ and GNA11 promoters (encoding for Gαq and Gα11) have already been characterized and are both regulated by the transcription factor early growth response 1 (Egr-1). In contrast, the PLCB1 promoter (encoding for the direct downstream effector PLCβ1) has neither been cloned nor characterized. Therefore, the purpose of this study was to 1) characterize the PLCB1 promoter, and 2) assess its potential regulation by Egr-1. By means of 5'- Rapid Amplification of 5'-cDNA ends analysis in human heart tissue we found an initiation of transcription from multiple starting points, the main transcription starting point being located at nt-235 relative to the translation start point. The PLCB1 promoter was cloned and deletion constructs were generated. Luciferase assays were performed in three different cell lines and regulatory regions were identified between nt-595/nt-313 (Hek293: P=0.013; HASMC: P=0.019; H9c2: P=0.005). In electrophoretic mobility shift assays one specific Egr-1 binding site was identified at nt-451/-419 and PLCB1 promoter activity was increased more than 5-fold (Hek293: P=0.0008) and 1,6- fold (H9c2: P=0.0499) following overexpression of Egr-1. Thus, the PLCB1 promoter was characterized for the first time and a specific interaction with the transcription factor Egr-1 was shown. Our data provide a potential molecular mechanism relating to pathophysiological conditions such as cardiac hypertrophy where activation by Egr-1 of Gαq/Gα11-PLCβ1 plays an important role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app