COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Stratification of patients with liver fibrosis using dual-energy CT.

Assessing the severity of liver fibrosis has direct clinical implications for patient diagnosis and treatment. Liver biopsy, typically considered the gold standard, has limited clinical utility due to its invasiveness. Therefore, several imaging-based techniques for staging liver fibrosis have emerged, such as magnetic resonance elastography (MRE) and ultrasound elastography (USE), but they face challenges that include limited availability, high cost, poor patient compliance, low repeatability, and inaccuracy. Computed tomography (CT) can address many of these limitations, but is still hampered by inaccuracy in the presence of confounding factors, such as liver fat. Dual-energy CT (DECT), with its ability to discriminate between different tissue types, may offer a viable alternative to these methods. By combining the "multi-material decomposition" (MMD) algorithm with a biologically driven hypothesis we developed a method for assessing liver fibrosis from DECT images. On a twelve-patient cohort the method produced quantitative maps showing the spatial distribution of liver fibrosis, as well as a fibrosis score for each patient with statistically significant correlation with the severity of fibrosis across a wide range of disease severities. A preliminary comparison of the proposed algorithm against MRE showed good agreement between the two methods. Finally, the application of the algorithm to longitudinal DECT scans of the cohort produced highly repeatable results. We conclude that our algorithm can successfully stratify patients with liver fibrosis and can serve to supplement and augment current clinical practice and the role of DECT imaging in staging liver fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app