Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of cannabinoid receptors in hepatic fibrosis and apoptosis associated with bile duct ligation in rats.

This study assessed the effect of stimulation of CB2 receptors or CB1 blockade on fibrosis and apoptosis in rats subjected to bile duct ligation (BDL). It was performed in sham and BDL rats for four weeks. Fibrosis-induced rats received a CB2 receptor agonist β-caryophyllene, CB1 receptor antagonist, hemopressin, combination of β-caryophyllene and CB2 antagonist, AM630 or vehicle daily during the last 2 weeks of the BDL ligation. Transaminases activity, bilirubin levels, hepatic collagen content, hydroxyproline level, Bcl2 positive hepatocytes, and mRNA expression of CB1, CB2 receptors and matrix metalloproteinase-1 (MMP-1) genes were measured in all animals. Bile duct ligated rats showed increased bilirubin levels, elevated transaminases activity, increased hepatic collagen content, and hydroxyproline level, reduced Bcl2 positive hepatocytes and increased expression of the assessed messengers in comparison with sham rats. However, fibrotic rats treated with either β-caryophyllene or hemopressin had reduced hepatic collagen content, improved transaminase activity and reduced bilirubin level, ameliorated CB1 gene expression, and increased MMP-1 gene expression compared with untreated fibrotic rats. These results were associated with attenuated apoptosis with only β-caryophyllene administration. CB2 receptor blockade by AM630 prevents the effects of β-caryophyllene on CB1 receptor and MMP-1 genes expression. This study points out that either stimulation of CB2 receptors or CB1 blockade can attenuate hepatic fibrosis in bile duct ligated rats. The mechanisms underlying these incidents may open new avenues for attenuating fibrosis and apoptosis of cholestasis- induced liver diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app