Journal Article
Review
Add like
Add dislike
Add to saved papers

Loss of 5-hydroxymethylcytosine in cancer: cause or consequence?

Genomics 2014 November
Discovery of the enzymatic activity that catalyses oxidation of 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC) mediated by the MLL (KMT2A) fusion partner TET1 has sparked intense research to understand the role this new DNA modification has in cancer. An unambiguous picture has emerged where tumours are depleted of 5hmC compared to corresponding normal tissue, but it is not known whether lack of 5hmC is a cause or a consequence of tumourigenesis. Experimental data reveals a dual tumour-suppressive and oncogenic role for TET proteins. Tet2 mutations are drivers in haematological malignancies but Tet1 had an oncogenic role in MLL-rearranged leukaemia, where Tet1 is overexpressed. Overexpression of Tet2 in melanoma cells re-established the 5hmC landscape and suppressed cancer progression but inhibiting Tet1 in non-transformed cells did not initiate cellular transformation. In this review we summarise recent findings that have shaped the current understanding on the role 5hmC plays in cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app