Add like
Add dislike
Add to saved papers

Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria.

We showed earlier that diminution of 2,4-dinitrophenol (DNP)-stimulated respiration and increase of both mitochondrial swelling and electrochemical potential (ΔΨmito) dissipation in medium containing TlNO3 and KNO3 were caused by opening of Tl(+)-induced mitochondrial permeability transition pore (MPTP) in the inner membrane of Ca(2+)-loaded rat liver mitochondria. The MPTP opening was studied in the presence of bivalent metal ions (Sr(2+), Ba(2+), Mn(2+), Co(2+) and Ni(2+)), trivalent metal ions (Y(3+) and La(3+)), and ruthenium red. We found that these metal ions (except Ba(2+) and Co(2+)) as well as ruthenium red inhibited to the MPTP opening that manifested in preventing both diminution of the DNP-stimulated respiration and increase of the swelling and of the ΔΨmito dissipation in medium containing TlNO3, KNO3, and Ca(2+). Inhibition of the MPTP opening by Sr(2+) and Mn(2+) is suggested because of their interaction with high affinity Ca(2+) sites, facing the matrix side and participating in the MPTP opening. The inhibitory effects of metal ions (Y(3+), La(3+), and Ni(2+)), and ruthenium red are accordingly discussed in regard to competitive and noncompetitive inhibition of the mitochondrial Ca(2+)-uniporter. High concentrations (50μM) of Y(3+) and La(3+) favored of MPTP opening in the inner membrane of rat liver mitochondria in Ca(2+) free medium containing TlNO3. The latter MPTP opening was markedly eliminated by MPTP inhibitors (cyclosporine A and ADP).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app