JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synergistic transcriptional and post-transcriptional regulation of ESC characteristics by core pluripotency transcription factors in protein-protein interaction networks.

The molecular mechanism that maintains the pluripotency of embryonic stem cells (ESCs) is not well understood but may be reflected in complex biological networks. However, there have been few studies on the effects of transcriptional and post-transcriptional regulation during the development of ESCs from the perspective of computational systems biology. In this study, we analyzed the topological properties of the "core" pluripotency transcription factors (TFs) OCT4, SOX2 and NANOG in protein-protein interaction networks (PPINs). Further, we identified synergistic interactions between these TFs and microRNAs (miRNAs) in PPINs during ESC development. Results show that there were significant differences in centrality characters between TF-targets and non-TF-targets in PPINs. We also found that there was consistent regulation of multiple "core" pluripotency TFs. Based on the analysis of shortest path length, we found that the module properties were not only within the targets regulated by common or multiple "core" pluripotency TFs but also between the groups of targets regulated by different TFs. Finally, we identified synergistic regulation of these TFs and miRNAs. In summary, the synergistic effects of "core" pluripotency TFs and miRNAs were analyzed using computational methods in both human and mouse PPINs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app