JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Selective hydrogenation of furan-containing condensation products as a source of biomass-derived diesel additives.

ChemSusChem 2014 October
In this study, we demonstrate that while the energy density and lubricity of the C15 and C16 products of furan condensation of biomass-derived aldehydes with 2-methylfuran are consistent with requirements for diesel, these products do not meet specifications for cetane number and pour point due to their aromatic furan rings. However, a novel class of products that fully meet or exceed most specifications for diesel can be produced by converting the furan rings in these compounds to cyclic ether moieties. Full hydrodeoxygenation of furan condensation products to alkanes would require 55-60% higher hydrogen demand, starting from biomass, compared to the products of furan ring saturation, providing an additional incentive to support the saturated products. We also report here on a tunable class of catalysts that contain Pd nanoparticles supported on ionic liquid-modified SiO2 that can achieve complete saturation of the furan rings in yields of 95% without opening these rings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app