JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The role of nuclear imaging in pulmonary hypertension.

Pulmonary hypertension (PH) is a disease characterized by a chronic elevation of pulmonary artery pressure from various causes. Pulmonary artery hypertension (PAH) is one of subtype which results in premature death often as a result of right ventricular (RV) dysfunction. In spite of the recent progress in novel cardiac imaging techniques and new drugs for PAH, there remain significant unresolved issues including a need for earlier diagnosis, refinement of risk stratification, and monitoring the effects of treatment. Cardiac and pulmonary imaging with transthoracic echocardiography (TTE) with Doppler, magnetic resonance imaging (MRI), and computed tomography (CT) are done routinely in many clinical centers. However, routine and emerging nuclear techniques may have a pivotal role of assessment of the patient with PH, and is currently the subject of significant research. Potential Roles for Nuclear Imaging in the Evaluation of the PH Patient: (1) Evaluation of cardiac structure and function (RNA) (non-nuclear techniques would include TTE, CT, and MRI). (2) Functional imaging. This includes the use of ventilation-perfusion scintigraphy (V/Q scan) to diagnose chronic thromboembolic pulmonary hypertension (CTEPH), 123l-metaiodobenzylguanidine (MIBG) imaging to evaluate the cardiac sympathetic nervous system (non-nuclear techniques include invasive right heart catheterization and TTE). (3) Measurement of RV perfusion (with gated SPECT studies). (4) Evaluation of cardiac and pulmonary metabolism (PET scans). This review article will summarize the pathophysiology, classification, natural history, and diagnostic approach of PH. Current and emerging nuclear techniques will be discussed under the four themes of evaluation of structure, functional imaging, flow, and metabolism. These will be compared to current and emerging nuclear and non-nuclear diagnostic tests in the evaluation and management of patients with PH. We will also discuss research applications exploring new insights into flow and metabolism in the right heart and lung and the application of new radioligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app