Add like
Add dislike
Add to saved papers

Propofol protects against angiotensin II-induced mouse hippocampal HT22 cells apoptosis via inhibition of p66Shc mitochondrial translocation.

Hippocampal neuronal oxidative stress and apoptosis have been reported to be involved in cognitive impairment, and angiotensin II could induce hippocampal oxidative stress and apoptosis. Propofol is a widely used intravenous anesthetic agent in clinical practice, and it demonstrates significant neuroprotective activities. In this study, we investigated the mechanism how propofol protected mouse hippocampal HT22 cells against angiotensin II-induced oxidative stress and apoptosis. Cell viability was evaluated with CCK8 kit. Protein expressions of active caspase 3, cytochrome c, p66(Shc), p-p66(shc)-Ser(36), protein kinase C βII (PKCβII), Pin-1 and phosphatase A2 (PP2A) were measured by Western blot. Superoxide anion (O2(.-)) accumulation was measured with the reduction of ferricytochrome c. Compared with the control group, angiotensin II up-regulated expression of PKCβII, Pin-1 and PP2A, induced p66(Shc)-Ser(36) phosphorylation, and facilitated p66(Shc) mitochondrial translocation, resulting in O2(.-) accumulation, mitochondrial cytochrome c release, caspase 3 activation, and the inhibition of cell viability. Importantly, we found propofol inhibited angiotensin II-induced PKCβII and PP2A expression and improved p66(Shc) mitochondrial translocation, O2(.-) accumulation, mitochondrial cytochrome c release, caspase 3 activation, inhibition of cell viability. On the other hand, propofol had no effects on angiotensin II-induced Pin-1 expression and p66(Shc)-Ser(36) phosphorylation. Moreover, the protective effects of propofol on angiotensin II-induced HT22 apoptosis were similar with calyculin A, an inhibitor of PP2A and CGP53353, an inhibitor of PKCβII. However, the protective effect of propofol could be reversed by FTY720, an activator of PP2A, rather than PMA, an activator of PKCβII. Our data indicated that propofol down-regulated PP2A expression, inhibiting dephosphorylation of p66(Shc)-Ser(36) and p66(Shc) mitochondrial translocation, decreasing O2(.-) accumulation, reducing mitochondrial cytochrome c release, inhibiting caspase 3 activation. By these mechanisms, it protects mouse hippocampal HT22 cells against angiotensin II-induced apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app