Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Protein kinase D3 is essential for prostratin-activated transcription of integrated HIV-1 provirus promoter via NF-κB signaling pathway.

Prostratin has been proposed as a promising reagent for eradicating the latent HIV-1 provirus by inducing HIV-1 transcription activation. The molecular mechanism of this activation, however, is far from clear. Here, we show that the protein kinase D3 (PKD3) is essential for prostratin-induced transcription activation of latent HIV-1 provirus. First, silencing PKD3, but not the other members of PKD family, blocked prostratin-induced transcription of HIV-1. Second, overexpressing the constitutively active form of PKD3, but not the wild-type or kinase-dead form of PKD3, augmented the expression of HIV-1. Consistent with this observation, we found that prostratin could trigger PKD3 activation by inducing the phosphorylation of its activation loop. In addition, we identified PKCε of the novel PKC subfamily as the upstream kinase for this phosphorylation. Finally, the activation effect of PKD3 on HIV-1 transcription was shown to depend on the presence of κB element and the prostratin-induced activation of NF-κB, as indicated by the fact that silencing PKD3 blocked prostratin-induced NF-κB activation and NF-κB-dependent HIV-1 transcription. Therefore, for the first time, PKD3 is implicated in the transcription activation of latent HIV-1 provirus, and our results revealed a molecular mechanism of prostratin-induced HIV-1 transcription via PKCε/PKD3/NF-κB signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app