JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers.

ACS Nano 2014 September 24
Nanoporous Ni-Co binary oxide layers were electrochemically fabricated by deposition followed by anodization, which produced an amorphous layered structure that could act as an efficient electrocatalyst for water oxidation. The highly porous morphologies produced higher electrochemically active surface areas, while the amorphous structure supplied abundant defect sites for oxygen evolution. These Ni-rich (10-40 atom % Co) binary oxides have an increased active surface area (roughness factor up to 17), reduced charge transfer resistance, lowered overpotential (∼325 mV) that produced a 10 mA cm(-2) current density, and a decreased Tafel slope (∼39 mV decade(-1)). The present technique has a wide range of applications for the preparation of other binary or multiple-metals or metal oxides nanoporous films. Fabrication of nanoporous materials using this method could provide products useful for renewable energy production and storage applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app