Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Multifunctional 1D magnetic and fluorescent nanoparticle chains for enhanced MRI, fluorescent cell imaging, and combined photothermal/chemotherapy.

While the assembled 1D magnetic nanoparticle (NP) chains have demonstrated synergistic magnetic effects from the individual NPs, it is essential to prepare new 1D NP chains that can combine the magnetism with other important material properties for multifunctional applications. This paper reports the fabrication and multifunctional investigation of a new type of 1D NP chains that combine the magnetic properties with fluorescent properties, photothermal conversion ability, and drug carrier function. The building block NPs are composed of magnetic Fe(3)O(4) nanocrystals clustered in the core and fluorescent carbon dots embedded in the mesoporous carbon shell with hydroxyl/carboxyl groups anchored on their surface. These NPs can assemble under the induction of external magnetic field and form stable 1D NP chains of diameter ∼ 90 nm and length ∼ 3 μm via the hydrogen bonding and π-π stacking linkage of the carbon shell. The resulted 1D hybrid NP chains not only demonstrate much higher magnetic resonance imaging (MRI) contrasting ability than the dispersed building block NPs, but also enter into intracellular region and light up the B16F10 cells under a laser excitation with strong and stable fluorescence. While the mesoporous carbon shell provides high drug loading capacity, the embedded fluorescent carbon dots convert near-infrared (NIR) light to heat, and hence kill the tumor cells efficiently and enhance the drug release rate to further improve the therapeutic efficacy under NIR irradiation. Such designed 1D magnetic-fluorescent hybrid NP chains with enhanced MRI contrast, fluorescent imaging ability, and combined chemo-/photothermal therapeutic ability have great potential for various biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app