Add like
Add dislike
Add to saved papers

Clinical evidence and bioinformatics characterization of potential hepatitis C virus resistance pathways for sofosbuvir.

UNLABELLED: Sofosbuvir (Sovaldi, SOF) is a nucleotide analog prodrug that targets the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase and inhibits viral replication. High sustained virological response rates are achieved when SOF is used in combination with ribavirin with or without pegylated interferon in subjects with chronic HCV infection. Potential mechanisms of HCV resistance to SOF and other nucleos(t)ide analog NS5B polymerase inhibitors are not well understood. SOF was the first U.S. Food and Drug Administration (FDA)-approved antiviral drug for which genotypic resistance analyses were based almost entirely on next-generation sequencing (NGS), an emerging technology that lacks a standard data analysis pipeline. The FDA Division of Antiviral Products developed an NGS analysis pipeline and performed independent analyses of NGS data from five SOF clinical trials. Additionally, structural bioinformatics approaches were used to characterize potential resistance-associated substitutions. Using protocols we developed, independent analyses of the NGS data reproduced results that were comparable to those reported by Gilead Sciences, Inc. Low-frequency, treatment-emergent substitutions occurring at conserved NS5B amino acid positions in subjects who experienced virological failure were also noted and further evaluated. The NS5B substitutions, L159F (sometimes in combination with L320F or C316N) and V321A, emerged in 2.2%-4.4% of subjects who failed SOF treatment across clinical trials. Moreover, baseline polymorphisms at position 316 were potentially associated with reduced response rates in HCV genotype 1b subjects. Analyses of these variants modeled in NS5B crystal structures indicated that all four substitutions could feasibly affect SOF anti-HCV activity.

CONCLUSION: SOF has a high barrier to resistance; however, low-frequency NS5B substitutions associated with treatment failure were identified that may contribute to resistance of this important drug for chronic HCV infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app