JOURNAL ARTICLE

Odontogenic differentiation of vascular endothelial growth factor-transfected human dental pulp stem cells in vitro

Wen Zhang, Wei Liu, Junqi Ling, Zhengmei Lin, Yan Gao, Xueli Mao, Yutao Jian
Molecular Medicine Reports 2014, 10 (4): 1899-906
25119396
Dental pulp stem cells (DPSCs) can be induced towards odontogenic differentiation. Previous studies have shown that vascular endothelial growth factor (VEGF) is able to induce the osteogenic differentiation of cells, but the effectiveness of VEGF in the odontogenic differentiation of DPSCs remains unclear. This study aimed to investigate the effects of lentivirus‑mediated human VEGF gene transfection on the proliferation and odontogenic differentiation of human DPSCs in vitro. DPSCs were transfected with either lentiviral pCDH‑CMV‑MCS‑EFI‑copGFP (pCDH) vector or recombinant pCDH‑VEGF vector, and the growth characteristics of the resulting DPSCs/Vector and DPSCs/VEGF were subsequently assessed. The odontogenic differentiation genes of the two groups of cells, including alkaline phosphatase, osteocalcin, dentin sialophosphoprotein and dentin matrix protein 1 (DMP1), were evaluated by quantitative polymerase chain reaction (qPCR). The specific proteins of odontogenic differentiation, including dentin sialoprotein and DMP1, were analyzed by western blotting. DPSCs/VEGF showed similar proliferation characteristics to DPSCs/Vector during the observation period. qPCR results showed that the relative VEGF gene expression was significantly higher in DPSCs/VEGF than that in DPSCs/Vector two days after transfection (P<0.01). Similarly, western blot analysis showed that the protein expression levels of VEGF were higher in DPSCs/VEGF than those in DPSCs/Vector. On the first, fourth, eighth and 16th days after lentivirus-mediated transfection, the expression of odontogenic differentiation-specific genes and proteins was higher in DPSCs/VEGF than that in DPSCs/Vector. These results indicated that lentivirus-mediated VEGF gene transfection promoted the odontogenic differentiation of human DPSCs in vitro.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25119396
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"