JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Defective pantothenate metabolism and neurodegeneration.

Inborn errors of CoA (coenzyme A) biosynthesis lead to neurodegenerative disorders in humans. PKAN (pantothenate kinase-associated neurodegeneration) manifests with damage to brain, retina and testis and is caused by mutations in PANK2, the gene encoding the mitochondrial form of pantothenate kinase, a key regulatory enzyme in CoA synthesis. Further attention has been focused on this pathway by the recent discovery that mutations in the gene encoding CoA synthase lead to a similar neurodegenerative disorder, raising the spectre of a common mechanism of pathogenesis. How do defects in CoA production result in neurodegeneration? Why are certain tissues and cell types selectively vulnerable? And what is the underlying neurodegenerative process? Answers to some of these questions have come from animal models of disease, including flies and mice, as well as directly from humans. The damaged tissue types share key features that are likely to contribute to their selective vulnerability. These include the presence of a blood-tissue barrier, the milieu with respect to oxidative stress, tissue metabolic demand, relative expression of genes encoding similar proteins in these tissues and cell membrane composition. Substantial progress in understanding these important neurometabolic disorders has been made since the first gene discovery more than a decade ago. With rational therapeutics now in development for PKAN, we foresee prevention of neurodegeneration and hope for neuroregeneration or neuro-rescue.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app