Absence of endo-1,4-β-glucanase KOR1 alters the jasmonate-dependent defence response to Pseudomonas syringae in Arabidopsis

Jaime López-Cruz, Ivan Finiti, Emma Fernández-Crespo, Oscar Crespo-Salvador, Pilar García-Agustín, Carmen González-Bosch
Journal of Plant Physiology 2014 October 15, 171 (16): 1524-32
During plant-pathogen interactions, the plant cell wall forms part of active defence against invaders. In recent years, cell wall-editing enzymes, associated with growth and development, have been related to plant susceptibility or resistance. Our previous work identified a role for several tomato and Arabidopsis endo-1,4-β-glucanases (EGs) in plant-pathogen interactions. Here we studied the response of the Arabidopsis thaliana T-DNA insertion mutant lacking EG Korrigan1 (KOR1) infected with Pseudomonas syringae. KOR1 is predicted to be an EG which is thought to participate in cellulose biosynthesis. We found that kor1-1 plants were more susceptible to P. syringae, and displayed severe disease symptoms and enhanced bacterial growth if compared to Wassilewskija (Ws) wild-type plants. Hormonal and gene expression analyses revealed that the jasmonic acid (JA) pathway was activated more in kor1-1 plants with an increase in the JA-biosynthesis gene LOX3 and a greater accumulation of JA. Upon infection the accumulation of JA and JA-isoleucine (JA-Ile) was higher than in wild-type plants and increased the induction of LOX3 and the JA-responsive PDF1.2 gene. In addition, the increase of salicylic acid (SA) in healthy and infected kor1-1 may reflect the complex interaction between JA and SA, which results in the more susceptible phenotype displayed by the infected mutant plants. Callose deposition was enhanced in infected kor1-1 and an increase in pathogen-induced hydrogen peroxide took place. The susceptible phenotype displayed by KOR1-deficient plants was coronatine-independent. No significant changes were detected in the hormonal profile of the kor1-1 plants infected by coronatine-deficient P. syringae cmaA, which supports that absence of EG KOR1 alters per se the plant response to infection. We previously reported increased resistance of kor1-1 to B. cinerea, hence, the lack of this EG alters cell wall properties and plant responses in such a way that benefits P. syringae colonisation but restricts B. cinerea invasion.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"