Add like
Add dislike
Add to saved papers

Differentiation of lipoma from liposarcoma on MRI using texture and shape analysis.

Academic Radiology 2014 September
RATIONALE AND OBJECTIVES: To determine if differentiation of lipoma from liposarcoma on magnetic resonance imaging can be improved using computer-assisted diagnosis (CAD).

MATERIALS AND METHODS: Forty-four histologically proven lipomatous tumors (24 lipomas and 20 liposarcomas) were studied retrospectively. Studies were performed at 1.5T and included T1-weighted, T2-weighted, T2-fat-suppressed, short inversion time inversion recovery, and contrast-enhanced sequences. Two experienced musculoskeletal radiologists blindly and independently noted their degree of confidence in malignancy using all available images/sequences for each patient. For CAD, tumors were segmented in three dimensions using T1-weighted images. Gray-level co-occurrence and run-length matrix textural features, as well as morphological features, were extracted from each tumor volume. Combinations of shape and textural features were used to train multiple, linear discriminant analysis classifiers. We assessed sensitivity, specificity, and accuracy of each classifier for delineating lipoma from liposarcoma using 10-fold cross-validation. Diagnostic accuracy of the two radiologists was determined using contingency tables. Interreader agreement was evaluated by Cohen kappa.

RESULTS: Using optimum-threshold criteria, CAD produced superior values (sensitivity, specificity, and accuracy are 85%, 96%, and 91%, respectively) compared to radiologist A (75%, 83%, and 80%) and radiologist B (80%, 75%, and 77%). Interreader agreement between radiologists was substantial (kappa [95% confidence interval]=0.69 [0.48-0.90]).

CONCLUSIONS: CAD may help radiologists distinguish lipoma from liposarcoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app