JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Molecular cloning and characterizations of porcine SAMHD1 and its roles in replication of highly pathogenic porcine reproductive and respiratory syndrome virus.

The sterile alpha motif and HD domain 1 (SAMHD1) protein is a novel innate immunity restriction factor that inhibits HIV-1 infection in myeloid cells. Here, we cloned the full-length SAMHD1 complementary DNA (cDNA) from porcine peripheral blood lymphocytes. The porcine SAMHD1 cDNA was of 3951 bp with an open reading frame of 1884 bp, encoding a polypeptide of 627 amino acids. Porcine SAMHD1 mRNA was detected in all swine tissues examined, with the higher expression in the tonsil, lung, liver, and lymph node tissues. The SAMHD1 protein was localized to the nucleus. Overexpression of SAMHD1 blocked the proliferation of HuN4, a highly pathogenic strain of porcine reproductive and respiratory syndrome virus (HP-PRRSV), in MARC-145 cells, by inhibiting the synthesis of the HuN4 complement RNA. The antiviral effects of the simian SAMHD1 protein were nearly equivalent to those of porcine SAMHD1 in the HuN4-infected MARC-145 cells. Phosphorylation analysis of SAMHD1 showed that overexpressed SAMHD1 protein was in primarily an unphosphorylated state. SAMHD1 overexpression increased the transcript abundance of IFN-stimulated genes ISG15 and ISG56. The mRNA levels of SAMHD1 and ISGs were significantly increased in porcine alveolar macrophages infected with HP-PRRSV. SAMHD1 protein level was also elevated, and the protein was not phosphorylated during infection. Collectively, our data indicate that SAMHDI inhibits HP-PRRSV proliferation through inhibiting the replication of HP-PRRSV. SAMHD1 might be the protein participating in the IFN signaling and is thus an important immunoregulatory protein in innate immunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app