Add like
Add dislike
Add to saved papers

A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery.

KEY MESSAGE: A major quantitative trait locus (QTL) for Fusarium oxysporum Fr. f. sp. niveum race 1 resistance was identified by employing a "selective genotyping" approach together with genotyping-by-sequencing technology to identify QTLs and single nucleotide polymorphisms associated with the resistance among closely related watermelon genotypes. Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 168 F3 families (24 plants in each family) exhibited continuous distribution for Fon race 1 response. Using a "selective genotyping" approach, DNA was isolated from 91 F2 plants whose F3 progeny exhibited the highest resistance (30 F2 plants) versus highest susceptibility (32 F2 plants), or moderate resistance to Fon race 1 (29 F2 plants). Genotyping-by-sequencing (GBS) technology was used on these 91 selected F2 samples to produce 266 single nucleotide polymorphism (SNP) markers, representing the 11 chromosomes of watermelon. A major quantitative trait locus (QTL) associated with resistance to Fon race 1 was identified with a peak logarithm of odds (LOD) of 33.31 and 1-LOD confidence interval from 2.3 to 8.4 cM on chromosome 1 of the watermelon genetic map. This QTL was designated "Fo-1.1" and is positioned in a genomic region where several putative pathogenesis-related or putative disease-resistant gene sequences were identified. Additional independent, but minor QTLs were identified on chromosome 1 (LOD 4.16), chromosome 3 (LOD 4.36), chromosome 4 (LOD 4.52), chromosome 9 (LOD 6.8), and chromosome 10 (LOD 5.03 and 4.26). Following the identification of a major QTL for resistance using the "selective genotyping" approach, all 168 plants of the F 2 population were genotyped using the SNP nearest the peak LOD, confirming the association of this SNP marker with Fon race 1 resistance. The results in this study should be useful for further elucidating the mechanism of resistance to Fusarium wilt and in the development of molecular markers for use in breeding programs of watermelon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app