JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of miR-106b-25 induced by salvianolic acid B inhibits epithelial-to-mesenchymal transition in HK-2 cells.

Epithelial-to-mesenchymal transition (EMT) is a highly conserved physiological program involved in renal fibrosis. Previous studies have shown that transforming growth factor (TGF)-β1 induces EMT in human kidney proximal tubular epithelial cells (HK-2 cells), whereas salvianolic acid B (Sal B) has a protective effect against EMT. The molecular pathogenesis of such processes is currently not well understood. In this study, a miRCURYTM LNA Array was used to screen HK-2 cells for expression changes of microRNAs (miRNAs) implicated in EMT. After validation by real-time PCR, all three members of the miR-106b-25 cluster (miR-106b, miR-93, and miR-25) were found to be markedly down-regulated during EMT in response to TGF-β1, whereas these miRNAs were up-regulated by Sal B treatment in a dose-dependent manner. Moreover, enhanced expression of miR-106b attenuated EMT by retaining the epithelial morphology of HK-2 cells, reducing the levels of α-smooth muscle actin (α-SMA), and increasing the levels of E-cadherin. To explore the molecular basis underlying the inhibitive effect of the miR-106b-25 cluster against EMT, bioinformatics analysis revealed that TGF-β type II receptor, a regulator of TGF-β signaling, might be a direct target of the miR-106b-25 cluster. In turn, low levels of TGF-β type II receptor in EMT of HK-2 cells were shown under the increase of miR-106b. In conclusion, our data suggest that the miR-106b-25 cluster may contribute to EMT in the kidney, and is involved in the protective effect of Sal B. Targeting of specific miRNAs may be a novel therapeutic approach to treat renal fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app