Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Physiological organization and topographic mapping of the antennal olfactory sensory neurons in female hawkmoths, Manduca sexta.

Chemical Senses 2014 October
The hawkmoth, Manduca sexta, has been a keystone system for developmental, neurobiological, and ecological studies for several decades. Because many of its behaviors are driven by olfactory cues, a thorough understanding of the Manduca olfactory system is essential to studying its biology. With the aim of functionally characterizing single antennal olfactory sensory neurons (OSNs) and determining their detailed topographic location, we performed systematic single-sensillum recordings on 4 morphological types of olfactory sensilla: trichoid-A and -B and basiconic-A and -B. We were able to unambiguously differentiate the colocalized cells associated with single sensilla based on their spike amplitudes. Using a panel of 61 biologically relevant compounds established in behavioral and gas chromatography-electrophysiology experiments, we made 223 recordings from these sensilla. Based on the response spectra of 187 responding OSNs, the sensilla fell into 12 distinct functional classes encompassing 29 OSNs. Selectivity of the 25 responding OSNs varied from narrowly tuned (responding to only one or a subset of compounds), to very broadly tuned (responding to multiple compounds), in a concentration-dependent manner. Four OSNs, however, did not respond to the tested components. Topographic mapping of the sensilla revealed that some physiological sensillum types are confined to particular locations on the antennal surface while other classes are more or less irregularly scattered all over the antennal annuli. Such information will prove beneficial for future receptor deorphanization, in situ hybridization, and molecular manipulation experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app