Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MRI T2* mapping correlates with biochemistry and histology in intervertebral disc degeneration in a large animal model.

European Spine Journal 2015 September
PURPOSE: To evaluate intervertebral disc (IVD) degeneration and treatments, an objective diagnostic tool is needed. Recently, T2* relaxation time mapping was proposed as a technique to assess early IVD degeneration, yet the correlation with biochemical content and histological features has not been investigated previously. Our objective was to validate T2* mapping for disc degeneration by correlating this technique with accepted parameters of IVD degeneration.

METHODS: Mildly and severely degenerated lumbar discs were obtained from an in vivo large animal study; two healthy goat spines were acquired as control. In total, 48 IVDs were analysed using T2-weighted MRI, T2* relaxation time mapping, biochemical assays, macroscopic and histological scoring. Correlations between variables were expressed with Spearman's rho (ρ) coefficients.

RESULTS: A complete range of degenerative grades were obtained (mean histological grade 2.2, range 0-6). A linear positive correlation was observed between T2* relaxation time and glycosaminoglycan content (ρ = 0.64, p < 0.001). T2* relaxation time decreased linearly with increasing degeneration as assessed with Pfirrmann scoring system (ρ = -0.67, p < 0.001), macroscopic (ρ = -0.33, p < 0.05) and histological (ρ = -0.45, p < 0.05) grading.

CONCLUSIONS: T2* mapping is an MRI technique for IVD evaluation which allows for measurements on a continuous scale thus minimising observer bias compared to grading systems. Although limited by a small sample size, this study showed a relatively good and linear correlation between T2* relaxation time and accepted parameters of disc degeneration. This suggests that T2* mapping is a promising tool to assess disc degeneration in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app