JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The metabolite 5'-methylthioadenosine signals through the adenosine receptor A2B in melanoma.

Several recent studies have shown evidence supporting the general knowledge that tumour cells exhibit changes in metabolism. It is becoming increasingly important to understand how these metabolic changes in tumour cells promote carcinogenesis and disease progression. We recently discovered a lack of methylthioadenosine phosphorylase (MTAP) expression in melanoma, which resulted in an accumulation of the metabolite 5'-methylthioadenosine (MTA) in melanoma cells and in the extracellular environment. MTA was shown to affect cell proliferation of surrounding stroma cells and cell invasiveness and the activation of the transcription factor activator protein-1 (AP-1) in melanoma cells. In this study, we addressed the regulation of cellular signalling by extracellular MTA accumulation. By focusing on putative receptors that could modulate MTA signalling, we identified the adenosine receptor ADORA2B as an important candidate. Knockdown experiments and the use of specific agonists and antagonists confirmed a link between MTA and AP-1 signalling through the ADORA2B receptor. Interestingly, stimulation of the cells with MTA did not result in activation of the classical cyclic adenosine monophosphate (cAMP) signalling cascades or in Ca(2+)-dependent signalling. We instead showed protein kinase C (PKC) signalling to be involved in MTA-mediated AP-1 activation. In summary, we identified ADORA2B to be the specific receptor and signalling pathway for the metabolite MTA. These findings may influence the use of MTA in a therapeutic manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app