JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Removal of Direct Red 23 from aqueous solution using corn stalks: isotherms, kinetics and thermodynamic studies.

The objective of this study was to assess the suitability and efficiency of corn stalk (CS) for the removal of diazo dye Direct Red 23 (DR23) from aqueous solutions. The effect of different variables in the batch method as a function of solution pH, contact time, initial dye concentration, CS amount, temperature, and so forth by the optimization method has been investigated. The color reduction was monitored by spectrophotometry at 503 nm before and after DR23 adsorption on the CS, and the removal percentage was calculated using the difference in absorbance. The sorption processes followed the pseudo second order in addition to intraparticle diffusion kinetics models with a good correlation coefficient with the overall entire adsorption of DR23 on adsorbent. The experimental equilibrium data were tested by four widely used isotherm models namely, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich (D-R). It was found that adsorption of DR23 on CS well with the Freindlich isotherm model, implying monolayer coverage of dye molecules onto the surface of the adsorbent. More than 99% removal efficiency was obtained within 10 min at adsorbent dose of 0.2 g for initial dye concentration of 10-90 mg L(-1) at pH 3. Various thermodynamic parameters, such as Gibbs free energy, entropy, and enthalpy, of the ongoing adsorption process have been calculated. Judgment based on the obtained results of thermodynamic values shows the spontaneous and endothermic nature adsorption processes on adsorbent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app