Add like
Add dislike
Add to saved papers

MEF2 transcription factors promotes EMT and invasiveness of hepatocellular carcinoma through TGF-β1 autoregulation circuitry.

Invasion and metastasis is the main causes leading to the death of hepatocellular carcinoma (HCC) patients. However, the underlying mechanism is still to be explored. Transforming growth factor β1 (TGF-β1) is a stronger inducer of HCC cell invasion. However, the downstream effector of TGF-β1 that promotes HCC invasion is still unknown. In this study, we found that PI3K/Akt activation takes place following the stimulation of TGF-β1. The inhibition of PI3K/Akt activation abolished epithelial-mesenchymal transition (EMT) and invasion of HCC cells induced by TGF-β1. Myocyte enhancer factors 2 (MEF2) family proteins were found to be overexpressed in HCC cells under the treatment of TGF-β1 in a PI3K/Akt-dependent way. Silencing the expression of MEF2s was able to prevent the effect of TGF-β1 on HCC EMT and invasion. Unexpectedly, MEF2 proteins were able to promote the expression of TGF-β1 in HCC cells, suggesting the existence of regulatory circuitry consisting of TGF-β1, PI3K/Akt, and MEF2. A natural compound, oleanolic acid, was demonstrated to suppress the invasion and EMT of HCC cells by downregulating MEF2, showing that targeting this pathway is an effective therapeutic strategy for HCC invasion. We believe that our findings can contribute to better understanding of the involved mechanism of HCC invasion and the development of preventive and therapeutic strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app