JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Echinocystic acid, isolated from Gleditsia sinensis fruit, protects endothelial progenitor cells from damage caused by oxLDL via the Akt/eNOS pathway.

Life Sciences 2014 October 3
AIMS: Our previous studies revealed that echinocystic acid (EA) showed obvious attenuation of atherosclerosis in rabbits fed a high-fat diet. However, the underlying mechanisms remain to be elucidated. Considering the importance of endothelial progenitor cells (EPCs) in atherosclerosis, we hypothesise that EPCs may be one of the targets for the anti-atherosclerotic potential of EA.

MAIN METHODS: After in vitro cultivation, EPCs were exposed to 100 μg/mL of oxidised low-density lipoprotein (oxLDL) and incubated with or without EA (5 and 20 μM) for 48 h. An additional two groups of EPCs (oxLDL+20 μM EA) were pre-treated with either wortmannin, an inhibitor of the phosphoinositide 3-kinase (PI3K) pathway, or nitro-l-arginine methyl ester (l-NAME), an endothelial nitric oxide synthase (eNOS)-specific inhibitor. Assessment of EPC apoptosis, adhesion, migration, and nitric oxide (NO) release was performed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) staining, cell counting, caspase-3 activity assay, transwell chamber assay, and Griess reagent, respectively. The protein expression of protein kinase B (Akt) and eNOS was detected using Western blot.

KEY FINDINGS: Treatment of EPCs with oxLDL induced significant apoptosis and impaired adhesion, migration, and NO production. The deleterious effects of oxLDL on EPCs were attenuated by EA. However, when EPCs were pre-treated with wortmannin or l-NAME, the effects of EA were abrogated. Additionally, oxLDL significantly down-regulated eNOS protein expression as well as repression of eNOS and Akt phosphorylation.

SIGNIFICANCE: The inhibitory effect of oxLDL on Akt/eNOS phosphorylation was attenuated by EA. Taken together, the results indicate that EA protects EPCs from damage caused by oxLDL via the Akt/eNOS pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app