Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Astrocytosis measured by ¹¹C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer's patients.

PURPOSE: The Alzheimer's disease (AD) pathology is characterized by fibrillar amyloid deposits and neurofibrillary tangles, as well as the activation of astrocytosis, microglia activation, atrophy, dysfunctional synapse, and cognitive impairments. The aim of this study was to test the hypothesis that astrocytosis is correlated with reduced gray matter density in prodromal AD.

METHODS: Twenty patients with AD or mild cognitive impairment (MCI) underwent multi-tracer positron emission tomography (PET) studies with (11)C-Pittsburgh compound B ((11)C-PIB), (18) F-Fluorodeoxyglucose ((18) F-FDG), and (11)C-deuterium-L-deprenyl ((11)C-DED) PET imaging, as well as magnetic resonance imaging (MRI) scanning, cerebrospinal fluid (CSF) biomarker analysis, and neuropsychological assessments. The parahippocampus was selected as a region of interest, and each value was calculated for four different imaging modalities. Correlation analysis was applied between DED slope values and gray matter (GM) densities by MRI. To further explore possible relationships, correlation analyses were performed between the different variables, including the CSF biomarker.

RESULTS: A significant negative correlation was obtained between DED slope values and GM density in the parahippocampus in PIB-positive (PIB + ve) MCI patients (p = 0.025) (prodromal AD). Furthermore, in exploratory analyses, a positive correlation was observed between PIB-PET retention and DED binding in AD patients (p = 0.014), and a negative correlation was observed between PIB retention and CSF Aβ42 levels in MCI patients (p = 0.021), while the GM density and CSF total tau levels were negatively correlated in both PIB + ve MCI (p = 0.002) and MCI patients (p = 0.001). No significant correlation was observed with FDG-PET and with any of the other PET, MRI, or CSF biomarkers.

CONCLUSIONS: High astrocytosis levels in the parahippocampus of PIB + ve MCI (prodromal AD) patients suggest an early preclinical influence on cellular tissue loss. The lack of correlation between astrocytosis and CSF tau levels, and a positive correlation between astrocytosis and fibrillar amyloid deposition in clinical demented AD together indicate that parahippocampal astrocytosis might have some causality within the amyloid pathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app