Add like
Add dislike
Add to saved papers

Forcing aggregation of cyanine dyes with salts: a fine line between dimers and higher ordered aggregates.

It is uncommon to read about cyanine dyes in the literature and not have their aggregation discussed. They are of high interest considering their propensity to undergo self-organization in aqueous solution, leading to interesting photophysical properties resulting from the formation of their dimers and higher ordered aggregates. Currently, the study of their aggregation is in high demand due to their diverse application range including dye-sensitized solar cells. However, their aggregation in high salt solutions is under studied, and the effect on aggregation in congruence with high ionic strength is often overlooked. In a previous study, our group established the role of specific ion effects and in particular the necessity of matching water affinity to induce aggregation of a cationic cyanine dye, thiazole orange. In order to advance the understanding of this topic, we present in this article the diverse aggregation of cyanine dyes, as a single monovalent salt can cause different aggregation responses in a variety of these dyes. We established via absorption spectroscopy combined with chemometric analyses that the inherent monomer-dimer equilibrium of a dye depends on its geometry. More interestingly, experimental data coupled with DFT calculations reveal that not only the geometry of a dye but also its charge location plays a role in the aggregate morphology formed by the interaction of a cationic cyanine dye and an anion. It is thought that contact ion pair formation and effective charge screening generated within that ion pair are responsible for aggregates with a greater order.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app