JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1).

The renal phenotype induced by loss-of-function mutations of inwardly rectifying potassium channel (Kir), Kcnj10 (Kir4.1), includes salt wasting, hypomagnesemia, metabolic alkalosis and hypokalemia. However, the mechanism by which Kir.4.1 mutations cause the tubulopathy is not completely understood. Here we demonstrate that Kcnj10 is a main contributor to the basolateral K conductance in the early distal convoluted tubule (DCT1) and determines the expression of the apical Na-Cl cotransporter (NCC) in the DCT. Immunostaining demonstrated Kcnj10 and Kcnj16 were expressed in the basolateral membrane of DCT, and patch-clamp studies detected a 40-pS K channel in the basolateral membrane of the DCT1 of p8/p10 wild-type Kcnj10(+/+) mice (WT). This 40-pS K channel is absent in homozygous Kcnj10(-/-) (knockout) mice. The disruption of Kcnj10 almost completely eliminated the basolateral K conductance and decreased the negativity of the cell membrane potential in DCT1. Moreover, the lack of Kcnj10 decreased the basolateral Cl conductance, inhibited the expression of Ste20-related proline-alanine-rich kinase and diminished the apical NCC expression in DCT. We conclude that Kcnj10 plays a dominant role in determining the basolateral K conductance and membrane potential of DCT1 and that the basolateral K channel activity in the DCT determines the apical NCC expression possibly through a Ste20-related proline-alanine-rich kinase-dependent mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app