JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of miRNAs dysregulated in human foreskin keratinocytes (HFKs) expressing the human papillomavirus (HPV) Type 16 E6 and E7 oncoproteins.

Human papillomaviruses (HPVs) are associated with the pathogenesis of a variety of human cancers, including cervical and oropharyngeal cancers. The HPV E6 and E7 oncogenes are usually expressed to high levels in these cancers. Previous studies have shown dysregulation of cellular microRNAs (miRNAs) in HPV-positive cell lines and cancer tissues and recent studies have identified a few miRNAs whose levels are altered in the presence of the viral E6 and E7 proteins. In order to identify all the cellular miRNAs whose expression may be affected by these oncoproteins, we carried out microarray analysis using human foreskin keratinocytes (HFKs) expressing either or both of these two proteins. These studies showed that 90 and 60 miRNAs were dysregulated in the presence of the E6 or the E7 protein, respectively. Of these, 43 miRNAs were similarly affected in HFK-E6 and/or HFK-E7 when compared to control cells. The joint expression of E6 and E7 proteins in HFKs caused changes in the levels of 64 miRNAs, of which 24 were similarly affected in HFK-E6 and/or HFK-E7 cells relative to controls. The microarray experiments were validated by quantitative real-time RT-PCR analysis of several differentially expressed miRNAs. Several miRNAs dysregulated by the E6 and/or E7 proteins are known to be altered in a variety of human cancers. Furthermore, previously known cellular targets of these miRNAs are involved in processes such as cell cycle regulation, apoptosis, cell-cell adhesion, cell mobility and proliferation, and alterations in their levels may contribute to HPV-associated carcinogenesis. Taken together, the results of our studies suggest that high risk HPV E6 and E7 proteins share the ability to regulate a subset of cellular miRNAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app