Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions.

This paper presents an adaptive output-feedback neural network (NN) control scheme for a class of stochastic nonlinear time-varying delay systems with unknown control directions. To make the controller design feasible, the unknown control coefficients are grouped together and the original system is transformed into a new system using a linear state transformation technique. Then, the Nussbaum function technique is incorporated into the backstepping recursive design technique to solve the problem of unknown control directions. Furthermore, under the assumption that the time-varying delays exist in the system output, only one NN is employed to compensate for all unknown nonlinear terms depending on the delayed output. Moreover, by estimating the maximum of NN parameters instead of the parameters themselves, the NN parameters to be estimated are greatly decreased and the online learning time is also dramatically decreased. It is shown that all the signals of the closed-loop system are bounded in probability. The effectiveness of the proposed scheme is demonstrated by the simulation results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app