Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Blockade of interleukin 6 signalling ameliorates systemic insulin resistance through upregulation of glucose uptake in skeletal muscle and improves hepatic steatosis in high-fat diet fed mice.

BACKGROUND & AIMS: Mice fed high-fat diet (HFD) demonstrate obesity-related systemic insulin resistance (IR). Aim of this study is to clarify the role of interleukin (IL)-6 in IR in vivo focusing on skeletal muscle, adipose tissue and liver.

METHODS: Plasma markers of IR and hepatic IL-6 signalling were examined in eight-week HFD feeding C57/BL6 mice. Furthermore, IR-related molecules in skeletal muscles, adipose tissues and livers were investigated following a single injection of anti- IL-6 receptor neutralizing antibody (MR16-1) in two-week HFD feeding mice. To investigate the role of IL-6 in hepatic steatosis by prolonged HFD, hepatic triglyceride accumulation was assessed in eight-week HFD feeding mice with continuous MR16-1 treatment.

RESULTS: High-fat diet for both 2 and 8 weeks elevated plasma IL-6, insulin and leptin, which were decreased by MR16-1 treatment. A single injection of MR16-1 ameliorated IR as assessed by glucose and insulin tolerance test, which may be attributable to upregulation of glucose transporter type 4 via phosphorylation of AMP-activated protein kinase as well as upregulation of peroxisome proliferator-activated receptor alpha in livers and, particularly, in skeletal muscles. MR16-1 also decreased mRNA expression of leptin and tumour necrosis factor-alpha and increased that of adiponectin in adipose tissue. High-fat diet for 8 weeks, not 2 weeks, induced hepatic steatosis and increased hepatic triglyceride content, all of which were ameliorated by MR16-1 treatment.

CONCLUSIONS: Blockade of excessive IL-6 stimulus ameliorated HFD-induced IR in a skeletal muscle and modulated the production of adipokines from an early stage of NAFLD, leading to prevention of liver steatosis for a long term.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app