JOURNAL ARTICLE

Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo

Barbara Schmaltz-Panneau, Luc Jouneau, Pierre Osteil, Yann Tapponnier, Marielle Afanassieff, Marco Moroldo, Alice Jouneau, Nathalie Daniel, Catherine Archilla, Pierre Savatier, Véronique Duranthon
Animal Reproduction Science 2014, 149 (1): 67-79
25059199
Pluripotency refers to the ability for a single cell to differentiate into the three embryonic germ layers. In mice, two types of pluripotent stem cells with different features have been obtained in vitro. Naive pluripotent stem cells are derived from the inner cell mass (ICM) of early blastocyst (ESCs) or reprogrammed from somatic cells (iPSCs), while primed pluripotent stem cells are derived from late epiblast (EpiSCs). Cells in a primed pluripotency state are more prone to differentiation and only naive pluripotent stem cells form germline chimera after injection into a blastocyst. Despite numerous attempts, capturing pluripotency in domestic mammalian species has been largely unsuccessful and only primed pluripotent stem cells have been obtained even starting from early blastocyst or reprogramming somatic cells. This raises two questions: whether inner cell mass and epiblast are in naive or primed pluripotency state and what are the transcriptome features of ESCs and iPSCs in these species. To address these questions we compared rabbit ICM, epiblast, ESCs and iPSCs transcriptomes. Our results show that: (i) molecular signature of naïve and primed pluripotency may differ between mice and rabbit embryos; (ii) Genes involved in G1/S transition of the cell-cycle, actin cytoskeleton signaling, development and differentiation pathways are upregulated in ESCs and iPSCs; (iii) ICM and epiblast upregulate pluripotency associated genes and display specific metabolic features. These results denote an advanced primed state of pluripotency for rabbit ESCs and iPSCs and evidence specific functions for ICM and epiblast that are not shared by ESCs and iPSCs.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25059199
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"