JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Akt2 mediates TGF-β1-induced epithelial to mesenchymal transition by deactivating GSK3β/snail signaling pathway in renal tubular epithelial cells.

BACKGROUND: The epithelial-mesenchymal transition (EMT) induced by growth factors or cytokines, particularly transforming growth factor-β (TGF-β1), plays an important role in kidney tubulointerstitial injury. However, signaling pathways mediating TGF-β1-induced EMT are not precisely known. In this study, we examined the role of Akt2 on EMT.

METHODS: HK-2 cells were exposed to 10 ng/ml TGF-β1 to establish a model of EMT. The expression of proteins were detected by western blot assay and Immunofluorescence. The levels of genes were tested by RT-PCR.

RESULTS: We found that treatment of HK-2 cells, a human proximal tubular cell line, with 10 ng/ml TGF-β1 resulted in activation of phosphatidylinositol 3-kinase (PI3K)/Akt2 signaling as evidenced by increased p-PI3K, Akt2 and p-Akt (Ser 473) expression. Importantly, TGF-β1 treatment decreased zona occludins 1 (ZO-1) and E-cadherin (epithelial markers) expression, increased fibronectin and vimentin (mesenchymal makers) expression, which were prevented by Ly294002 (the inhibitor of PI3K) or small interfering RNA (siAkt2), suggesting that Akt2 mediated TGF-β1-induced EMT. Meanwhile, RNA and protein levels of Snail1, the key inducer of EMT, were significantly elevated in TGF-β1-treated HK-2 cells. TGF-β1 also induced inactivation of glycogen synthase kinase-3β (GSK3β), an endogenous inhibitor of Snail. Knockdown of Akt2 using siRNAs or the PI3K inhibitor Ly294002 inhibited TGF-β1-induced phosphorylation of GSK3β and expression of Snail1.

CONCLUSION: These findings revealed that knockdown of Akt2 antagonized TGF-β1-induced EMT by inhibiting GSK3β/Snail signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app