Duplicate Publication
Journal Article
Add like
Add dislike
Add to saved papers

Arterial and mixed venous blood gas status during apnoea of intubation--proof of the Christiansen-Douglas-Haldane effect in vivo.

The Christiansen-Douglas-Haldane effect, in short the Haldane effect, describes the dependence of the CO2 binding of blood on the degree of oxygenation of haemoglobin. Under the physiological conditions of an 'open' system between blood and alveoli the partial pressure of arterial CO2 (PaCO2), must be less than that of mixed venous blood (PvCO2). During the unphysiological conditions of a 'closed' system, e.g. hyperoxic apnoea, i.e. continuous oxygen uptake without CO2 delivery by the lungs, the PaCO2 will not only approximate the PvCO2 but will even exceed it. Without the Haldane effect, rapid adjustment of PaCO2 to PvCO2 would be expected during apnoea due to the lack of CO2 excretion. If, however, as undertaken in this study, ongoing oxygenation (high alveolar PO2 (PACO2) with concomitant lack of CO2 delivery (apnoea, i.e. the CO2 concentration remains constant) lead to a continuing sufficient oxygenation of blood during its passage through the lung capillaries, then this leads to a rightwards shift of the CO2 binding curve--the Haldane effect. The resulting increase in PCO2 as shown here actually leads to an arterial-mixed venous CO2 partial pressure difference (avDPCO2) of 2.8 +/- 1.8 mmHg. The results described substantiate for the first time the existence of the Haldane effect under clinical conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app