COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Zinc bioaccumulation and ionoregulatory impacts in Fundulus heteroclitus exposed to sublethal waterborne zinc at different salinities.

Exposure of Fundulus heteroclitus to an environmentally relevant Zn concentration (500 μg L⁻¹) at different salinities (0, 3.5, 10.5, and 35 ppt) revealed the following effects: (i) plasma [Zn] doubled after exposure at 0 ppt, a response which was eliminated at 35 ppt. Tissue [Zn] also increased in gill, liver, intestine, and carcass at 0 ppt. (ii) Both branchial and intestinal Ca2⁺ ATPase activities decreased in response to Zn at 0 ppt and were elevated at 35 ppt. Plasma [Ca] decreased by 50% at 0 ppt and by 30% at 3.5 ppt and increased by 20% at 35 ppt. Gill [Ca] decreased by 35% at 0 ppt and increased by about 30% at all higher salinities. (iii) Branchial Na⁺,K⁺ ATPase activity decreased by 50% at 0 ppt, increased by 30% and 90% at 10.5 and 35 ppt respectively. Intestinal Na⁺,K⁺ ATPase activity was reduced by 30% at 0 ppt. (iv) Plasma [Na] decreased by 30% at 0 ppt in Zn-exposed. Zn exposure also disturbed the homeostasis of tissue cations (Na⁺, K⁺, Ca⁺⁺, Mg⁺⁺) in a tissue-specific and salinity-dependent manner. (v) Drinking rate was not altered by Zn exposure. In toxicity tests, acute Zn lethality (96-h LC50) increased in a close to linear fashion from 9.8 mg L⁻¹ at 0 ppt to 75.0 mg L⁻¹ at 35 ppt. We conclude that sublethal Zn exposure causes pathological changes in both Ca⁺⁺ and Na⁺ homeostases, and that increasing salinity exerts protective effects against both sublethal and lethal Zn toxicities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app