JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

A marginalized two-part model for semicontinuous data.

Statistics in Medicine 2014 December 11
In health services research, it is common to encounter semicontinuous data characterized by a point mass at zero followed by a right-skewed continuous distribution with positive support. Examples include health expenditures, in which the zeros represent a subpopulation of patients who do not use health services, while the continuous distribution describes the level of expenditures among health services users. Semicontinuous data are typically analyzed using two-part mixture models that separately model the probability of health services use and the distribution of positive expenditures among users. However, because the second part conditions on a non-zero response, conventional two-part models do not provide a marginal interpretation of covariate effects on the overall population of health service users and non-users, even though this is often of greatest interest to investigators. Here, we propose a marginalized two-part model that yields more interpretable effect estimates in two-part models by parameterizing the model in terms of the marginal mean. This model maintains many of the important features of conventional two-part models, such as capturing zero-inflation and skewness, but allows investigators to examine covariate effects on the overall marginal mean, a target of primary interest in many applications. Using a simulation study, we examine properties of the maximum likelihood estimates from this model. We illustrate the approach by evaluating the effect of a behavioral weight loss intervention on health-care expenditures in the Veterans Affairs health-care system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app