Add like
Add dislike
Add to saved papers

Time-adjusted internal target volume: a novel approach focusing on heterogeneity of tumor motion based on 4-dimensional computed tomography imaging for radiation therapy planning of lung cancer.

PURPOSE: To consider nonuniform tumor motion within the internal target volume (ITV) by defining time-adjusted ITV (TTV), a volume designed to include heterogeneity of tumor existence on the basis of 4-dimensional computed tomography (4D-CT).

METHODS AND MATERIALS: We evaluated 30 lung cancer patients. Breath-hold CT (BH-CT) and free-breathing 4D-CT scans were acquired for each patient. The tumors were manually delineated using a lung CT window setting (window, 1600 HU; level, -300 HU). Tumor in BH-CT images was defined as gross tumor volume (GTV), and the sum of tumors in 4D-CT images was defined as ITV-4D. The TTV images were generated from the 4D-CT datasets, and the tumor existence probability within ITV-4D was calculated. We calculated the TTV80 value, which is the percentage of the volume with a tumor existence probability that exceeded 80% on ITV-4D. Several factors that affected the TTV80 value, such as the ITV-4D/GTV ratio or tumor centroid deviation, were evaluated.

RESULTS: Time-adjusted ITV images were acquired for all patients, and tumor respiratory motion heterogeneity was visualized. The median (range) ITV-4D/GTV ratio and median tumor centroid deviation were 1.6 (1.0-4.1) and 6.3 mm (0.1-30.3 mm), respectively. The median TTV80 value was 43.3% (2.9-98.7%). Strong correlations were observed between the TTV80 value and the ITV-4D/GTV ratio (R=-0.71) and tumor centroid deviation (R=-0.72). The TTV images revealed the tumor motion pattern features within ITV.

CONCLUSIONS: The TTV images reflected nonuniform tumor motion, and they revealed the tumor motion pattern features, suggesting that the TTV concept may facilitate various aspects of radiation therapy planning of lung cancer while incorporating respiratory motion in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app