Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

FAS-based cell depletion facilitates the selective isolation of mouse induced pluripotent stem cells.

Cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSC) opens up new avenues for basic research and regenerative medicine. However, the low efficiency of the procedure remains a major limitation. To identify iPSC, many studies to date relied on the activation of pluripotency-associated transcription factors. Such strategies are either retrospective or depend on genetically modified reporter cells. We aimed at identifying naturally occurring surface proteins in a systematic approach, focusing on antibody-targeted markers to enable live-cell identification and selective isolation. We tested 170 antibodies for differential expression between mouse embryonic fibroblasts (MEF) and mouse pluripotent stem cells (PSC). Differentially expressed markers were evaluated for their ability to identify and isolate iPSC in reprogramming cultures. Epithelial cell adhesion molecule (EPCAM) and stage-specific embryonic antigen 1 (SSEA1) were upregulated early during reprogramming and enabled enrichment of OCT4 expressing cells by magnetic cell sorting. Downregulation of somatic marker FAS was equally suitable to enrich OCT4 expressing cells, which has not been described so far. Furthermore, FAS downregulation correlated with viral transgene silencing. Finally, using the marker SSEA-1 we exemplified that magnetic separation enables the establishment of bona fide iPSC and propose strategies to enrich iPSC from a variety of human source tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app