JOURNAL ARTICLE

Troxerutin improves hepatic lipid homeostasis by restoring NAD(+)-depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice

Zi-Feng Zhang, Shao-Hua Fan, Yuan-Lin Zheng, Jun Lu, Dong-Mei Wu, Qun Shan, Bin Hu
Biochemical Pharmacology 2014 September 1, 91 (1): 74-86
25026599
Recent evidences suggest that NAD(+) depletion leads to abnormal hepatic lipid metabolism in high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD); however, the contributing mechanism is not well understood. Our previous study showed that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, effectively inhibited obesity, and normalized hyperglycemia and hyperlipidemia in high-cholesterol diet-induced diabetic mice. Here we investigated whether troxerutin improved hepatic lipid metabolism via preventing NAD(+) depletion in HFD-induced NAFLD mouse model and the mechanisms underlying these effects. Our results showed that troxerutin markedly prevented obesity, liver steatosis and injury in HFD-fed mice. Troxerutin largely suppressed oxidative stress-mediated NAD(+)-depletion by increasing nicotinamide phosphoribosyltransferase (NAMPT) protein expression and decreasing poly (ADP-ribose) polymerase-1 (PARP1) protein expression and activity in HFD-treated mouse livers. Consequently, troxerutin remarkably restored Silent mating type information regulation 2 homolog1 (SirT1) protein expression and activity in HFD-treated mouse livers. Therefore, troxerutin promoted SirT1-mediated AMP-activated protein kinase (AMPK) activation to inhibit mammalian target of rapamycin complex 1 (mTORC1) signaling, which enhanced nuclear lipin 1 localization, lowered cytoplasmic lipin 1 localization and the ratio of hepatic Lpin 1β/α. Ultimately, troxerutin improved lipid homeostasis by enhancing fatty acid oxidation and triglyceride secretion, and suppressing lipogenesis in HFD-fed mouse livers. In conclusion, troxerutin displayed beneficial effects on hepatic lipid homeostasis in HFD-induced NAFLD by blocking oxidative stress to restore NAD(+)-depletion-mediated dysfunction of lipin 1 signaling. This study provides novel mechanistic insights into NAFLD pathogenesis and indicates that troxerutin is a candidate for pharmacological intervention of NAFLD via restoring NAD(+) levels.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25026599
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"