JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Efficient quantum dot light-emitting diodes by controlling the carrier accumulation and exciton formation.

The performances and spectroscopic properties of CdSe/ZnS quantum dot light-emitting diodes (QD-LEDs) with inserting a thickness-varied 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) layer between the QD emission layer and 4,4-N,N-dicarbazole-biphenyl (CBP) hole transport layer (HTL) are studied. The significant enhancement in device peak efficiency is demonstrated for the device with a 3.5 nm TPBi interlayer. The photoluminescence lifetimes of excitons formed within QDs in different devices are also measured to understand the influence of electric field on the QD emission dynamics process and device efficiency. All the excitons on QDs at different devices have nearly the same lifetime even though at different bias. The improvement of device performance is attributed to the separation of charge carrier accumulation interface from the exciton formation zone, which suppresses exciton quenching caused by accumulated carriers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app