JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hsa-miR-1 downregulates long non-coding RNA urothelial cancer associated 1 in bladder cancer.

MicroRNAs (miRNAs) are known to mainly target protein-coding genes at post-transcriptional level, resulting in mRNA destabilization and/or translational repression. Long non-coding RNAs (lncRNAs) are emerging as a novel set of targets for miRNAs. Here, we report that downregulated hsa-miR-1 and upregulated lncRNA urothelial cancer associated 1 (UCA1) were inversely expressed in bladder cancer. Hsa-miR-1 decreased the expression of UCA1 in bladder cancer cells in an Ago2-slicer-dependent manner. The binding site between UCA1 and hsa-miR-1 was confirmed. Overexpression of hsa-miR-1 inhibited bladder cancer cell growth, induced apoptosis, and decreased cell motility. Knockdown of UCA1 expression phenocopied the effects of upregulation of hsa-miR-1. Transfection of UCA1 expression vector partly reversed the changes caused by transfection of pre-miR-1 plasmids. This study provides evidence for hsa-miR-1 to play tumor suppressive roles via downregulating lncRNA UCA1 in bladder cancer, which may have potential therapeutic significance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app