JOURNAL ARTICLE

Online decoding of hidden Markov models for gait event detection using foot-mounted gyroscopes

Andrea Mannini, Vincenzo Genovese, Angelo Maria Sabatini
IEEE Journal of Biomedical and Health Informatics 2014, 18 (4): 1122-30
25014927
In this paper, we present an approach to the online implementation of a gait event detector based on machine learning algorithms. Gait events were detected using a uniaxial gyro that measured the foot instep angular velocity in the sagittal plane to feed a four-state left-right hidden Markov model (HMM). The short-time Viterbi algorithm was used to overcome the limitation of the standard Viterbi algorithm, which does not allow the online decoding of hidden state sequences. Supervised learning of the HMM structure and validation with the leave-one-subject-out validation method were performed using treadmill gait reference data from an optical motion capture system. The four gait events were foot strike, flat foot (FF), heel off (HO), and toe off. The accuracy ranged, on average, from 45 ms (early detection, FF) to 35 ms (late detection, HO); the latency of detection was less than 100 ms for all gait events but the HO, where the probability that it was greater than 100 ms was 25%. Overground walking tests of the HMM-based gait event detector were also successfully performed.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25014927
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"