Add like
Add dislike
Add to saved papers

Competitive HIF Prolyl Hydroxylase Inhibitors Show Protection against Oxidative Stress by a Mechanism Partially Dependent on Glycolysis.

The hypoxia inducible factor 1 (HIF-1) is a central transcription factor involved in the cellular and molecular adaptation to hypoxia and low glucose supply. The level of HIF-1 is to a large degree regulated by the HIF prolyl hydroxylase enzymes (HPHs) belonging to the Fe(II) and 2-oxoglutarate-dependent dioxygenase superfamily. In the present study, we compared competitive and noncompetitive HPH-inhibitor compounds in two different cell types (SH-SY5Y and PC12). Although the competitive HPH-inhibitor compounds were found to be pharmacologically more potent than the non-competitive compounds at inhibiting HPH2 and HPH1, this was not translated into the cellular effects of the compounds, where the non-competitive inhibitors were actually more potent than the competitive in stabilizing and translocatingHIF1 α to the nucleus (quantified with Cellomics ArrayScan technology). This could be explained by the high cellular concentrations of the cofactor 2-oxoglutarate (2-OG) as the competitive inhibitors act by binding to the 2-OG site of the HPH enzymes. Both competitive and non-competitive HPH inhibitors protected the cells against 6-OHDA induced oxidative stress. In addition, the protective effect of a specific HPH inhibitor was partially preserved when the cells were serum starved and exposed to 2-deoxyglucose, an inhibitor of glycolysis, indicating that other processes than restoring energy supply could be important for the HIF-mediated cytoprotection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app