JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Restoration of chemosensitivity by multifunctional micelles mediated by P-gp siRNA to reverse MDR.

Biomaterials 2014 October
One of the main obstacles in tumor therapy is multiple drug resistance (MDR) and an underlying mechanism of MDR is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins, especially P-glycoprotein (P-gp). In the synergistic treatment of siRNA and anti-cancer drug doxorubicin, it is crucial that both the siRNA and doxorubicin are simultaneously delivered to the tumor cells and the siRNA can fleetly down-regulate P-g before doxorubicin inactivates the P-gp and is pumped out. Herein, a type of micelles comprising a polycationic PEI-CyD shell to condense the siRNA and hydrophobic core to package doxorubicin is reported. The structure of the polymer is determined by (1)H NMR, FT-IR, DSC, and XRD and the micelles are characterized by DLS, 2D-NOESY NMR, and TEM to study the self-assembly of the micelles with siRNA and drugs. In vitro studies demonstrate controlled release and temporal enhancement of the therapeutic efficacy of P-gp siRNA and doxorubicin. Release of siRNA down-regulates the mRNA and protein levels of P-gp in the MCF-7/ADR cell lines effectively and the accumulated doxorubicin facilitates apoptosis of the cells to reverse MDR. Moreover, in vivo research reveals that the siRNA and doxorubicin loaded micelles induce tumor cell apoptosis and inhibit the growth of MDR tumor. The western blotting and RT-PCR results illustrate that the synergistic treatment of siRNA and doxorubicin leads to efficient reduction of the P-gp expression as well as cell apoptotic induction in MDR tumors at a small dosage of 0.5 mg/kg. The micelles have large clinical potential in drug/RNAi synergistic treatment via restoration of the chemosensitivity in MDR cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app