JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Removal of methylene blue from aqueous solutions by chemically modified bamboo.

Chemosphere 2014 September
Chemically modified bamboo (CMB) was utilized for removing methylene blue (MB) from aqueous media in the present study. The adsorbent was characterized by Fourier transform infrared (FTIR) spectra and elemental analysis, which confirms that carboxyl groups and diethylenetriamine were successfully introduced into the surface of bamboo. The effects of initial MB concentration (100-900mgL(-1)), contact time (15-315min), the pH of the solution (3-10), temperature (298-318K), adsorbent dosage (0.4-2.6gL(-1)) and salt concentration on the adsorption efficiency of CMB towards MB were investigated. It was found that the adsorption of MB in CMB fits Langmuir mode well, and the maximum adsorption capacity of CMB achieved 606mgg(-1) at 298K, which is much higher than those obtained from previously investigated bioadsorbents. The adsorption kinetics can be described by pseudo-second-order kinetic model, and the adsorption of MB on CMB was an exothermic process. The results of the present study suggest that CMB is an effective biosorbent for removal of organic pollutants from aqueous solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app