JOURNAL ARTICLE

Enantioselective biodegradation of fluoxetine by the bacterial strain Labrys portucalensis F11

Irina S Moreira, Ana R Ribeiro, Carlos M Afonso, Maria E Tiritan, Paula M L Castro
Chemosphere 2014, 111: 103-11
24997906
Fluoxetine (FLX) is a chiral fluorinated pharmaceutical indicated mainly for the treatment of depression and is one of the most dispensed drugs in the world. There is clear evidence of environmental contamination with this drug and its active metabolite norfluoxetine (NFLX). In this study the enantioselective biodegradation of racemic FLX and of its enantiomers by Labrys portucalensis strain F11 was assessed. When 2μM of racemic FLX was supplemented as sole carbon source, complete removal of both enantiomers, with stoichiometric liberation of fluoride, was achieved in 30d. For racemic FLX concentration of 4 and 9μM, partial degradation of the enantiomers was obtained. In the presence of acetate as an additional carbon source, at 4, 9 and 21μM of racemic FLX and at 25μM of racemic FLX, (S)-FLX or (R)-FLX, complete degradation of the two enantiomers occurred. At higher concentrations of 45 and 89μM of racemic FLX, partial degradation was achieved. Preferential degradation of the (R)-enantiomer was observed in all experiments. To our knowledge, this is the first time that enantioselective biodegradation of FLX by a single bacterium is reported.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24997906
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"